Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Table 1: Expected thermal noise for continuum observations in the L-band. We assume 58 antennas and consider only robust -0.5, which is a good default for continuum imaging, with no confusion noise estimates or Gaussian tapering. Confusion is not reflected in this table since it is dependent on declination and imaging parameters. Please use the continuum sensitivity tool for a more realistic calculation.

Integration time

Thermal noise at robust=-0.5 (uJy/beam)

excluding persistent RFI channels

L-band

UHF band

S-band: S1

S-band: S4

12 minutes

20.4

26.6

15.4

15.8

1 hour

9.1

11.9

6.9

7.1

8 hours

3.2

4.2

2.5

2.5

Note

The calculators give the recommended time on target only. Calibration and slewing overheads need to be added to your time request. For longer (> 5 hours) single target observations following the standard calibration scheme an overhead of 25% can be assumed. Shorter observations, or slews to multiple targets, may incur higher overheads. Please refer to our page on average overheads for further details.

Your observation can be simulated in the Observation Planning Tool (OPT).

...

The plot can be used to determine the optimal robust weighting for the proposed observations. Extraneous curves can be turned off by clicking on the legends:

...

Assumptions

L- and UHF bands

  • A system-equivalent flux density (SEFD) of 425 Jy in L-band and 550 Jy in UHF band, per antenna, is assumed. Note that the SEFDs do have a slope as a function of frequency - full plots can be found here.

  • The observatory minimum requirement for a science array is 58 antennas, though more are generally available. The calculator assumes 58.

  • While careful flagging can, in some instances, yield some useful data in bands dominated by GNSS and GSM signals, these bands are generally discarded by continuum observers. This gives worst case effective bandwidths as follows:

...

L-band

...

UHF band

...

Total bandwidth

...

856 MHz

...

544 MHz

...

RFI loss

...

45% (mainly GNSS / GSM downlink)

...

10% (mainly GSM downlink)

...

Rolloff low

...

44 MHz

...

36 MHz

...

Rolloff high

...

42 MHz

...

73 MHz

...

Effective available bandwidth

...

385 MHz

...

Details of the calculations

...

This calculator does not calculate the rms noise of a single pointing. This needs to first be calculated by using the continuum or spectral line calculators discussed above and entered into the appropriate field of the calculator. The mosaic calculator will take into account beam overlap to produce a plot of the combined sensitivity across the region of interest.

Recommended workflow

  1. Use either the continuum or spectral line sensitivity calculator to calculate the rms noise for a single pointing, according to your planned observation and imaging parameters.

  2. Determine your pointing grid, either from your own calculations or using the ‘Targets’ tab on the mosaic calculator.

  3. Determine the resulting rms noise distribution across the map area.

Using the calculator

If you are not certain of the exact pointing centres to be used, but you have a boundary of the area that you wish to cover, the first tab of the calculator can be used to generate an optimal set of pointings. If you are uncertain of what the separation should be, it can be calculated for you based on the frequency to be optimised for. Note that MeerKAT’s large bandwidth implies almost a factor of 2 difference between the highest and lowest frequencies. General practice is to space the pointings by FWHM/sqrt(2), however, you may choose your own separation or pointing centres to concentrate on areas of particular interest.

...

Calculate pointing centres

  1. Decide on the area that you wish to image. Use your favorite image viewer or published image to calculate the nodes of a polygon to encapsulate the area of interest.

  2. Decide on the separation that you wish to use. If uncertain the tool can compute it for you, based on the frequency of interest. For spectral line work, this would be at the observed line frequency. For continuum observations, you may wish to optimise at the highest observed frequency to ensure optimal signal-to-noise across the entire band.

...

3. Enter or upload polygon nodes. An example csv file is shown below:

...